Estudio de la humectabilidad y el efecto de dos tratamientos superficiales en la adhesión entre un material compuesto fibra de corteza/HDPE y madera sólida de Eucalyptus nitens
Barra lateral del artículo
Contenido principal del artículo
Resumen
El objetivo de esta investigación es estudiar la humectabilidad y el efecto de dos tratamientos superficiales sobre el material compuesto de fibra de corteza/HDPE (polietileno de alta densidad) para mejorar la adhesión entre este y madera sólida de E. nitens. Para conformar un material híbrido como elemento constructivo
Referencias
ASTM. (2003). Standard practice for preparation of surfaces of plastics prior to adhesive bonding. Vol 15.06. Adhesives. American Society for Testing and Materials ASTM D 2093-03. Philadelphia, US. 3p.
Ballerini, A., Bustos, X., Ramos, M. and Wechsler, A. (2008). Innovation in window and door profile designs using a wood-plastic composite. In: Proceedings of the 51st International Convention of Society of Wood Science and Technology. Paper SW-05. Concepción-Chile. 9p. Consultado el 07 Marzo, 2011. http://www.swst.org/meetings/AM08/proceedings/WS-05.pdf
Bouafif, H., Koubaa, H., Perré, P. and Cloutier, A. (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Composites Part A: Applied Science and Manufacturing 40(12): 1975-1981. https://doi.org/10.1016/j.compositesa.2009.06.003
Brewis, D. and Briggs, D. (1981). Adhesion to polyethylene and polypropylene. Polymer 22(1): 7-16. https://doi.org/10.1016/0032-3861(81)90068-9
de Meijer, M., Haemers, S., Cobben, W. and Militz, H. (2000). Surface energy determinations of wood: comparison of methods and wood species. Langmuir 16 Pp: 9352-9359. https://doi.org/10.1021/la001080n
Frihart, C. and Hunt, C. (2010). Adhesives with wood materials bond formation and performance. Chapter 10. In: Wood Handbook—Wood as an engineering material. Centennial edition. Robert J. Ross Editor. General Technical Report. FPL–GTR–190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. Pp: 1-24.
Gacitúa, W. and Wolcott, M. (2009). Morphology of wood species affecting wood-thermoplastics interactions: Microestructure and mechanical adhesion. Maderas Ciencia y Tecnología 11(3): 217-231. https://doi.org/10.4067/S0718-221X2009000300005
Gardner, D. (2006). Adhesion mechanisms of durable wood adhesive bonds. Chapter 19. In: Characterization of the Cellulosic Cell Wall. Douglas Stokke, Leslie Groom, Eds. Blackwell Publishing: Ames IOWA. Pp: 254-265. https://doi.org/10.1002/9780470999714.ch19
Geldres, E., Gerding, V. y Schlatter, J. (2006). Volumen de Eucalyptus nitens de 4-7 años de edad en un rodal de la X Región, Chile. Bosque 27(3): 223-230. https://doi.org/10.4067/S0717-92002006000300001
Gindl, M., Sinn, G., Reiterer, A. and Tschegg, S. (2001). Wood surface energy and time dependence of wettability: A comparison of different wood surfaces using and acid-base approach. Holzforschung 55. Pp: 433-440. https://doi.org/10.1515/HF.2001.071
Gindl, M. and Tschegg, S. (2002). Significance of the acidity of wood to the surface free energy components of different wood species. Langmuir 18. Pp: 3209-3212. https://doi.org/10.1021/la011696s
Gramlich, W., Gardner, D. and Neivant, D. (2006). Surface treatments of wood-plastic composites (WPC) to improve adhesion. Journal of Adhesion Science and Technology 20(16): 1873-1887. https://doi.org/10.1163/156856106779116623
Grobbelaar, F., Manyuchi, K. (2000). Eucalypt debarking: an international overview with a Southern African perspective. Forest Engineering Southern Africa (FESA) 68 p. http://www.yourday2day.com/site2/icfrfiles/publication/FESA/Eucalypt%20debarking.PDF Sitio web visitado el 28 Septiembre 2011
Gupta, B. (2006). Development of a coating technology for wood plastics composites. Thesis Master of Science in Materials Science and Engineering. School of Mechanical and Engineering Materials. Washington State University. Pullman WA-USA 130 p.
Harper, D. and Wolcott, M. (2004). Interaction between coupling agent and lubricants in wood-polypropylene composites. Composites Part A: Applied Science and Manufacturing. 35(3): 385-394. https://doi.org/10.1016/j.compositesa.2003.09.018
INFOR. (2008). Series y Estadísticas. Instituto Forestal (INFOR). Disponible en http://www.infor.cl/es/series-y-estadisticas.html Sitio web visitado el 05 Septiembre 2010
INFOR. (2010). Anuario forestal. Boletín Estadístico Nº 128, 134 p.
Jacob, M., Anandjiwala, R. and Thomas, S. (2008). Characterization of interfaces in composites using micro-mechanical techniques. Chapter 20. Part IV Vinyl polymer technology. In: Handbook of Vinyl Polymers: Radical Polymerization, Process and Technology. 2nd edition. Mumaya Mishra and Yusuf Yagci eds. Pp: 689-716. https://doi.org/10.1201/9781420015133.ch20
López, C. (2006). Eucalyptus nitens: Una alternativa que se proyecta. Lignum Bosque-Madera & Tecnología 90 Pp: 39-41.
Migneault, S., Koubba, A., Erchiqui, F., Chaala, A., Englud, K., Krause, C. and Wolccott, M. (2008). Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites. Journal of Applied Polymer Science 110(2): 1085-1092. https://doi.org/10.1002/app.28720
Moghaddam, H. and Mirhabibi, A. (2004). A development method for studying the surface energy variation on high density polyethylene. Iranian Polymer Journal 13(6): 485-494.
Nabi, D. and Jog, P. (1999). Natural Fiber Polymer Composites: A review. Advances in Polymer Technology 18(4): 351-363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
Nussbaum, R. M. (1999). Natural surface inactivation of Scot Pine and Norway Spruce evaluated by contact angle measurements. Holz Roh Werkstoff 57 (6): 419-424. https://doi.org/10.1007/s001070050067
Saini, G., Bhardwaj R., Choudhary, V. and Narula, A. (2010). Poly(vinyl chloride)-Acacia bark flour composite: Effect of particle size and filler content on mechanical, thermal, and morphological characteristics. Journal of Applied Polymer Science 117(3): 1309-1318. https://doi.org/10.1002/app.29987
Scheikl, M. and Dunky, M. (1998). Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface. Holzforschung 52. Pp: 89-94. https://doi.org/10.1515/hfsg.1998.52.1.89
Sewda, K. and Maiti, S. (2007). Mechanical properties of HDPE/bark flour composites. Journal of Applied Polymer Science. 105(5): 2598-2604. https://doi.org/10.1002/app.26293
Sewda, K. and Maiti, S. (2009). Mechanical properties of teak wood flour-reinforced HDPE composites. Journal of Applied Polymer Science. 112(3): 1826-1834. https://doi.org/10.1002/app.29696
Sharpe, L. H. (1972). The Interphase in Adhesion. Journal of Adhesion 4(1): 51-64. https://doi.org/10.1080/00218467208072210
Suresh, M., Srikanth, G. and Biswas, S. (2009). Thermoplastic Composite-Technology & Business Opportunities. Technology Information, Forestcasting and Assessment Council (TIFAC). Department of Science and Technology. Govt. of India. 9p. http://www.tifac.org.in/index.php?option=com_content&view=article&id=535:thermoplastic-composites-technology-a-business-opportunities&catid=85:publications&Itemid=952 Sitio web visitado el 25 Diciembre 2010
Taj, S., Ali Munawar, M. and Khan, S. (2007). Review: Natural fiber-reinforced polymer composites. Proceedings Pakistan Academy Science 44(2): 129-144.
UNE-EN. (2003). Una Norma Española-Europäische-Norm. Determinación de la resistencia a la cizalladura por tracción de juntas solapadas. UNE-EN 205. AENOR (eds.). Madrid-España. 15p.
Vásquez, C. (2005). Eucalyptus nitens: Mucho más que solo una opción pulpable. Revista Lignum Bosque-Madera & Tecnología. Reportaje Junio (80) Pp: 52-55.
Vásquez, G., Galiñanes, C., Freire, M., Antorrena, G. y González, J. (2011). Estudio del mojado y caracterización superficial por microscopía de barrido laser confocal de chapas de madera obtenidas por desenrollo. Maderas. Ciencia & Tecnología 13(2): 183-192. https://doi.org/10.4067/S0718-221X2011000200006
Velásquez, B. (2006). Situación de los sistemas de aprovechamiento de los residuos forestales para su utilización energética. Ecosistemas 15(1): 77-86.
Yemele, M., Koubba, A., Cloutier, A., Soulounganga, P. and Wolcott, M. (2010). Effect of bark content and size on the mechanical properties of bark/HDPE composites. Composites Part A: Applied Science and Manufacturing 41(1): 131-137. https://doi.org/10.1016/j.compositesa.2009.06.005
Descargas
Los trabajos publicados en Ciencia & Investigación Forestal se rigen por la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).
En lo esencial esta licencia involucra que los autores conservan sus derechos de autor, y que los lectores puedan de forma gratuita descargar, almacenar, copiar y distribuir la versión final aprobada y publicada del trabajo, siempre y cuando se realice sin fines comerciales y se cite la fuente y autoría de la obra.