Respuesta diferencial de dos especies de eucalipto a la aclimatación por K y riego en viveros
Barra lateral del artículo
Contenido principal del artículo
Resumen
El estrés hídrico es la principal restricción abiótica que afecta el establecimiento de los plantines forestales. Con el objetivo de evaluar el efecto del potasio y la restricción hídrica se estudió respuestas morfológicas y fisiológicas de plantines de Eucalyptus camaldulensis y E. globulus tanto en plantas de vivero como en condiciones controladas de plantación
Referencias
Aikio, S., Markkola, A. (2002). Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availabilities. Evol. Ecol., 16. Pp: 67-76. https://doi.org/10.1023/A:1016096309637
Burdett, A.N. (1990). Physiological processes in plantation establishment and the development of specification for forest planting stock, Can. J. For. Res., 20. Pp: 415-427. https://doi.org/10.1139/x90-059
Chamshama, S.A. & Hall, J.B. (1987). Effects of nursery treatments on Eucalyptus camaldulensis field establishment and early growth at Mafiga, Morogoro, Tanzania. For. Ecol. Manage., 21. Pp: 91-108. https://doi.org/10.1016/0378-1127(87)90074-0
Castro-Dıez,P., Navarro,J., Pintado, A., Sancho, L.G. & Maestro, M. (2006). Interactive effects of shade and irrigation on the performance of seedlings of three Mediterranean Quercus species. Tree Physiol., 26. Pp: 389-400. https://doi.org/10.1093/treephys/26.3.389
Correia, M., Torres, F. & Pereira, J. (1989). Water and nutrient supply regimes and the water relations of juvenile leaves of Eucalyptus globulus. Tree Physiol., 5. Pp: 459-475. https://doi.org/10.1093/treephys/5.4.459
Cozzo, D. (1995). Silvicultura de plantaciones maderables. Orientación Gráfica Editora. Buenos Aires, Argentina
Eakes, D.J., Wright, R.D. & Seiler, R. (1991). Potassium nutrition and moisture stress tolerance of Salvia. Hort. Science, 26(4): 422.
Egilla, J.N., Davies, F.T. & Boutton, T.W. (2005). Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus Rosasinensis at three potassium concentrations. Photosynth., 43(1): 135-140. https://doi.org/10.1007/s11099-005-5140-2
Galmes, J., Cifre, J., Medrano, H. & Flexas, J. (2005). Modulation of relative growth rate and its components by water stress in Mediterranean species with different growth forms. Oecol., 145. Pp: 21–31. https://doi.org/10.1007/s00442-005-0106-4
Garau, A.M, Guarnaschelli, A.B., Mema, V., Pathauer, P. & Lemcoff, J.H. (2004). Tissue water relations in Eucalyptus seedlings: Effects of species, K fertilization and drought. Conferencia Internacional IUFRO Eucalyptus in a Changing World. Aveiro, Portugal.
Garau, A.M. (2012). Los recursos forestales en el mundo y Argentina. C.I.F.A. Facultad Agronomía. UBA. 16 p.
Geiger, D. & Servaites, J. (1991). Carbon allocation and response to stress. En: Mooney, H., Winner, W. & Pell, E. (eds). Response of plants to multiple stresses. Academic Press, New York, USA. Pp:103-127. https://doi.org/10.1016/B978-0-08-092483-0.50010-4
Gindabaa, J., Rozanovb, A. & Negashc, L. (2005). Photosynthetic gas exchange, growth and biomass allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture deficit. For. Ecol. Manage., 205 Pp: 127-138. https://doi.org/10.1016/j.foreco.2004.10.056
Grime, J.P., Crick, J.C. & Rincon, J.E. (1986). The ecological significance of plasticity. In: Jennings, D.H. & Trew, A.J. (Eds). Plasticity in Plants Pp: 5-29. Symposia of the Society for Experimental Biology N° 40. Company of Biologists, Cambridge.
Guarnaschelli, A. B., Lemcoff, J.H., Prystupa, P. & Basci, S. (2003). Responses to drought preconditioning in Eucalyptus globulus Labill. provenances. Trees, 17. Pp: 501-509. https://doi.org/10.1007/s00468-003-0264-0
Guarnaschelli, A.B., Prystupa, P. & Lemcoff, J.H. (2006). Drought conditioning improves water status, stomatal conductance and survival of Eucalyptus globulus subsp. bicostata. Ann. For. Sci., 63. Pp: 941-950. https://doi.org/10.1051/forest:2006077
Guarnaschelli, A.B., Garau, A.M. & Caccia, F. (2006). Respuestas al déficit hídrico y lumínico durante el establecimiento de Salix. Jornadas de Salicáceas. Buenos Aires.
Guarnaschelli, A.B., Ruiz Nuñez, J., Chiavassa, J.A., Fedotova, N. & Garau, A.M. (2010). Aclimatación en vivero en plantas de Eucalyptus por restricción hídrica y fertilización potásica. XXIV Jornadas Forestales de Entre Ríos. Concordia, Entre Ríos.
Guarnaschelli, A.B., Garau, A.M., Caccia, F.D. & Cortizo, S.C. (2008). Physiological responses to shade and drought in Young Willow plants. 23rd Session of the International Poplar Commission. "Poplars, willows and people's wellbeing". Beijing, China.
Guarnaschelli, A. B., Chiavassa, J.A. & Garau, A.M. (2012). Respuestas fisiológicas, resistencia al estrés y crecimiento de plantas de Eucalyptus globulus y Eucalyptus grandis modificadas por potasio bajo condiciones de sequía. Congreso Latinoamericano de Eucalyptus. Pucón, Chile.
Hunt, R. (1982). Plant growth curves. The functional approach to plant growth analysis. University Park Press, Baltimore, Gran Bretaña.
Kleiner, K.W., Abrams, M.D. & Schultz, J.C. (1992). The impact of water and nutrient deficiencies on the growth, gas exchange and water relations of Red Oak and Chestnut Oak. Tree Physiol., 11. Pp:271-287. https://doi.org/10.1093/treephys/11.3.271
Kozlowski, T.T. & Pallardy, S.G. (1997). Physiology of woody plants. Second Edition. Academic Press, Nueva York.
Kozlowski, T.T. & Pallardy, S.G. (2002). Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev., 68. Pp: 270-334. https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
Lambers, H. & Poorter, H. (1992). Inherent variation in growth rate between higher plants: A search for ecological causes and consequences. Adv. Ecol. Res., 23. Pp: 187-261. https://doi.org/10.1016/S0065-2504(08)60148-8
Landis, T.D. (1989). Irrigation and water management. En: Landis, T.D., Tinus, R.W., McDonald, S.E. & Barnett, J.P. The Container Tree Nursery Manual, vol. 4. Agric. Handbook, 674. USDA Forest Service Washington, D.C. Pp: 1-39.
Lemcoff, J., Guarnaschelli, A., Garau, A., Basciali, M. & Ghersa, C. (1994). Osmotic adjustment and its use as selection criterion in Eucalyptus seedlings. Can. J. For. Res., 24. Pp: 2404-2408. https://doi.org/10.1139/x94-310
Lemcoff, J., Guarnaschelli, A., Garau, A. & Prystupa, P. (2002). Elastic and osmotic adjustment in rooted cuttings of several clones of Eucalyptus camaldulensis Dehnh. from southeasterm Australia after a drought. Flora, 197. Pp: 134-142.
Margolis, H.A. & Brand, D.G. (1990). An ecophysiological basis for understanding plantation establishment. Can.J. For. Res., 20. Pp: 375-390. https://doi.org/10.1139/x90-056
Marschner, H. (1995). Mineral Nutrition of Higher Plants. 2nd Ed. Academic Press, San Diego, California, USA.
Mema, V., Garau, A., Guarnaschelli, A. & Lemcoff, J. (2003). Fertilización de Eucalyptus globulus en vivero: Modificaciones morfológicas y fisiológicas inducidas por diferentes niveles de fertilización nitrogenada y potásica y su relación con la tolerancia al estrés hídrico en plantación. Primer Simposio Ibearoamericano de Eucalyptus globulus. Montevideo, Uruguay.
Merchant, A., Callister, A., Arndt, S., Tausz, M. & Adams, M. (2007). Contrasting physiological responses to water deficit in six Eucalyptus species. Ann. Bot., 100. Pp: 1507-1515. https://doi.org/10.1093/aob/mcm234
Nilsen, E. & Orcutt, D. (1996). The physiology of plants under stress. Wiley, Nueva York.
Ngugi, M.R., Hunt, A., Doley, D., Ryan, P. & Dart, P. (2003). Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water déficits. New For., 26. Pp: 187-200.
Osório, J., Osório, M.L., Chaves, M. & Pereira, J.S. (1998). Effects of water deficits on 13C discrimination and transpiration efficiency of Eucalyptus globulus clones. Aust. J. Plant Physiol., 25. Pp: 645-653. https://doi.org/10.1071/PP97167
Pereira, J.S, & Chaves, M.M. (1993). Plant water deficits in Mediterranean ecosystems. In: Smith, J.A.C. & Griffiths, H. (Eds). Water Deficits: Plant Responses from Cell to Community. Bios Scientific Publishers, Oxford. Pp: 237-250.
Plante, E., Garau, A. & Lemcoff, J.H. (2002). Fertilización diferencial con potasio en vivero. Modificaciones morfológicas y fisiológicas en plantines de eucalipto. XI Reunión Latinoam. Fisiología Vegetal-XXIV Reunión Argentina de Fisiología Vegetal-I Congreso Uruguayo de Fisiología Vegetal.
Pita, P. & Pardos, J. (2001). Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiol., 21. Pp: 599-607. https://doi.org/10.1093/treephys/21.9.599
Reis, G., Reis, M. & Maestri, M. (1988). Crescimento e relaçoes hidricas de mudas de Eucalyptus grandis e Eucalyptus camaldulensis em tubetes sob tres regimes de irrigaçao. Rev. Arbore, 12. Pp: 183-195.
Sasse, J. & Sands, R. (1996). Comparative responses of cuttings and seedlings of Eucalyptus globulus to water stress. Tree Physiol., 16. Pp: 287-294. https://doi.org/10.1093/treephys/16.1-2.287
Schulte, P. & Hinckley, T. (1985). A comparison of pressure-volume curve data analysis technique. Tree Physiol., 2. Pp: 89-103.
Soriano, A. (1991). Río de la Plata grasslands. En: Coupland, R. (Ed). Ecosystems of the world. Natural Grasslands. Introduction and Western Hemisphere. Elsevier. Amsterdam. Pp: 367-407
Teixeira, P.C., Moraes Gonçalves, J.L., Arthur Junior, J.C. & Dezordi, C. (2008). Eucalyptus sp. seedling response to potassium fertilization and soil water: Matéria seca e relações hídricas em mudas de Eucalyptus sp. em função da fertilização potássica e da umidade do solo. Ciência Flor., 18(1): 47-63. https://doi.org/10.5902/19805098510
Tuomela, K. (1997). Leaf water relations in six provenances of Eucalyptus microtheca: A greenhouse experiment. For. Ecol. Manage. 92(1-3): 1-10. https://doi.org/10.1016/S0378-1127(96)03961-8
Valladares, F., Wright, S. J., Lasso, E., Kitajima, K. & Pearcy, W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecol., 81. Pp: 1925-1936. https://doi.org/10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
Valladares, F., Chico, J., Aranda, I., Balaguer, L., Dizengremel, P., Manrique, E. & Dreyer, E. (2002). The greater seedling high-hight tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees, 16. Pp: 395-403. https://doi.org/10.1007/s00468-002-0184-4
Valladares, F., Dobarro, I., Sanchez-Gomez, D. & Pearcy, R. (2005). Photoinhibition and drought in Mediterranean Woody saplings: scaling effects and interactions in sun and shade phenotypes. Jour. Exper. Bot., 56. Pp: 483-494. https://doi.org/10.1093/jxb/eri037
van den Driessche, R. (1991). Influence of container nursery regimes on drought resistance of seedlings following planting. I. Survival and growth, Can. J. For. Res., 21. Pp: 555-565. https://doi.org/10.1139/x91-077
van den Driessche, R. (1992). Changes in drought resistance and root growth capacity of container seedlings in response to nursery drought, nitrogen and potassium treatments, Can. J. For. Res., 22. Pp: 740-749. https://doi.org/10.1139/x92-100
von Wernich, M. & Lavado, R. (2001). El potasio en viveros forestales de eucaliptos. En: Actas del Primer Simposio FAUBA-IPI-Fertilizar INTA. Pp: 199-205.
Wang, D., Bachelard, E. & Banks, J. (1988). Growth and water relations of seedlings of two subspecies of Eucalyptus globulus. Three Physiol., 4. Pp: 129-138. https://doi.org/10.1093/treephys/4.2.129
White, D., Beadle, C. & Worledge, D. (1996). Leaf water relations of Eucalyptus globulus ssp. globulus and E. nitens: seasonal, drought and species effects. Tree Physiol., 16. Pp: 469-476. https://doi.org/10.1093/treephys/16.5.469
White, D., Turner, N. & Galbraith, J. (2000). Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol., 20. Pp: 1157-1165.
Descargas
Los trabajos publicados en Ciencia & Investigación Forestal se rigen por la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).
En lo esencial esta licencia involucra que los autores conservan sus derechos de autor, y que los lectores puedan de forma gratuita descargar, almacenar, copiar y distribuir la versión final aprobada y publicada del trabajo, siempre y cuando se realice sin fines comerciales y se cite la fuente y autoría de la obra.