Efecto del raleo en el crecimiento y algunas propiedades de la madera de Eucalyptus nitens en una plantación de 15 años
Barra lateral del artículo
Contenido principal del artículo
Resumen
En el presente estudio se realizó la evaluación de un ensayo de intensidad de raleo en Eucalyptus nitens de 15 años de edad, localizado en la precordillera andina de Mulchén, Región del Biobío, Chile, intervenido a los 7 y 9 años, con densidades residuales de 300, 400, 500, 700 y un tratamiento testigo con 1070 arb/ha. El objetivo fue conocer el efecto del raleo en el crecimiento en el diámetro, la altura, el coeficiente de esbeltez, los índices de competencia área potencialmente aprovechable (APA), el área de proyección de copas (APC) y las propiedades de la madera; densidad básica, módulo de elasticidad dinámico (MOEd) y tensiones de crecimiento evaluadas con la deformación residual longitudinal de la fibra (DRL). También se evaluó el efecto de la orientación del fuste en las propiedades de la madera.
Referencias
ASTM. (1998). Standard Test Methods for Specific Gravity of Wood-Based Materials (D-2395). Annual Book of ASTM Standars. Section 4, Construction vol 0410 Wood. American Society for Testing and Materials. Easton. 666 p.
Baker, T. & Volker, P. (2007). Silviculture of Eucalypt plantations in Southern Australia for high-value solid Wood products. Ciencia & Investigación Forestal, 13(1): 43-57. https://doi.org/10.52904/0718-4646.2007.269
Bascuñán, A. (2004). The Influence of W ind on Radiata Pine Tree Shape and W ood Stiffness. Thesis for the
Degree of Masters of Forestry Science. University of Canterbury, New Zealand. 122 p.
Cardoso, A., Trugilho, P., Lima, J., Rosado, S. & Mendes, L. (2005). Longitudinal residual strain in different spacing and ages in hybrid clone of Eucalyptus. Cerne,11. Pp: 218-224.
Carter, P., Briggs, D., Ross, R. & Wang, X. (2005). Acoustic testing to enhance western forest values and meet customer wood quality needs. General Technical Report Pacific Northwest Research Station, PNW-GTR-642. Productivity of W estern Forests: A Forest Products Focus. Pp: 121-129.
Celhay, J.A., Bonnefoy, P. & Riquelme, F. (1999). Efecto de la intensidad de poda sobre el crecimiento de E. nitens. En: actas de Silvotecna XII, simposio IUFRO: Realidad y potencial de Eucalipto en Chile: cultivo silvícola y su uso industrial. Concepción, Chile. Pp: 119-138.
Chauhan, S. (2004). Selecting and/or processing wood according to its processing characteristics. Thesis doctor of philosophy in forestry. School of Forestry. University of Canterbury. New Zealand.
Chauhan, S.S. y Walker, J. (2006). Variations in acoustic velocity and density with age, and their interrelationships in Radiata Pine. Forest Ecology and Management, 229. Pp: 388-394. https://doi.org/10.1016/j.foreco.2006.04.019
Cremer, K., Borough, C., Mckinnell, F. & Carter, P. (1982). Effects of stocking and thinning on wind damage in plantations. N.Z.J. For. Sci.,12(2):244-268.
De Fégely, R. (2004). Sawing regrowth and plantation hardwoods with particular reference to growth stresses. Part A Literature review. Report Project N° PN02.1308. Forest and Wood Products Research Development Corporation.
Farrell, R., Innes, T. & Nolan, G. (2008). Sorting plantation Eucalyptus nitens logs with acoustic wave velocity. FW PRDC project PN07.3018. Forest and Wood Products Australia. 27 p.
Farrell, R., Atyeo, W., Siemon, G., Daian, G. & Ozarska, B. (2010). Impact of sapwood and the properties and market utilization of plantation and young hardwoods: Executive Summary and Literature Review (PART A). Proyect number: PNB039-0708. Forest and W ood Products Australia. 81 p.
Ferrand, J.C. (1983). Growth stresses and silviculture of Eucalypts. Australian Forest Research,13. Pp: 75-81.
Ferreira, M. (1968). Estudio da variacao da densidade basica da Madeira de Eucalyptus alba and Eucalyptus saligna. Piracicaba, Brasil. 77 p.
Grabianowski, M. (2003). Measuring acoustic properties in lumber and trees. MSc thesis, University of Canterbury, Christchurch, New Zealand. 148 p.
Guimaraes, R.F. (1965). Observation on diameters, heights, survival and weight of the wood in Eucalyptus saligna at various initial spacings. An Bras Flor Inst Nac Pinho, 17. Pp: 31-45.
Higgs, M.L. (1969). Genetic and environmental factors influencing commercially important wood properties of Eucalyptus grandis. PhD Thesis, Australian National Univ, Canberra. Australia.
INFOR. (2007). Proyecto “Desarrollo de opciones productivas de mayor valor para plantaciones de Eucalyptus nitens en la IX y X regiones: Propuesta silvícola”. En: http://www.infor.cl/nitens/p2antedecentes.html. Consulta: 11/2010.
INFOR (2010). Anuario Forestal 2010. Boletín Estadístico N° 128. 134 p.
Kennedy, R.W. (1995). Coniferous wood quality in the future: concerns and strategies. Wood Sci. Technol., 29(5):321-338. https://doi.org/10.1007/BF00202581
Kenneth, R. (2001). A general theory for the origin of growth stresses in reaction wood: how trees stay upright.
IAWA Journal, 22(3): 205-212.
Lasserre, J.P., Mason, E. & Watt, M. (2005). The effects of genotype and spacing on Pinus radiata D. Don corewood stiffness in an 11-year old experiment. Forest Ecology and Management, 205. Pp: 375-383. https://doi.org/10.1016/j.foreco.2004.10.037
Lasserre, J.P., Mason, E. & Watt, M. (2008). Influence of the main and interactive effects of site, stand stocking and clone on Pinus radiata D. Don corewood modulus of elasticity. Forest Ecology and Management, 255. Pp: 3455-3459. https://doi.org/10.1016/j.foreco.2008.02.022
Medhurst, J. & Beadle, C. (2000). Thinning for solid Wood products in Eucalyptus nitens plantations. In: Henderson, L., Waugh, G., Nolan, G. & Bennett, P. (Eds). Proceedings of IUFRO Conference, The Future of Eucalypts for Wood Products. Launceston, Australia. Pp: 343-348.
Medhurst, J., Beadle, C.& Neilsen, W. (2001). Early-age and later-age thinning affects growth, dominance, and intraspecific competition in Eucalyptus nitens plantations. Can. J. For. Res., 31. Pp: 187-197. https://doi.org/10.1139/x00-163
Medhurst, J., Battaglia, M. & Beadle, C. (2002). Measured and predicted changes in tree and stand water use following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation. Tree Physiol., 22. Pp: 775-784. https://doi.org/10.1093/treephys/22.11.775
Megraw, R.A. (1986). Douglas Fir wood properties. In Oliver C, D Hanley, J Johnson eds. Douglas Fir: Stand
management for the future. Inst. of For. Res. Contrib. 55. College of Forest Resources, University of Washington, Seattle. Pp: 81-96.
Muñoz, F., Espinosa, M., Herrera, M. & Cancino, J.(2005). Características del crecimiento en diámetro, altura y volumen de una plantación de Eucalyptus nitens sometida a tratamientos silvícolas de poda y raleo. Bosque, 26(1):93-99. https://doi.org/10.4067/S0717-92002005000100009
Muñoz, F., Neira, A. & Cancino, J. (2010). Efecto del raleo en la densidad básica de la madera de Eucalyptus nitens (Deane & Maiden) Maiden. Interciencia, 35(8):581-585.
Mutizabal, A. (2007). Comportamiento de tensiones de crecimiento en tres procedencias de Eucalyptus nitens, Región del Biobío. Memoria para optar al título de Ingeniero Forestal, Facultad de Ciencias Forestales, Universidad Austral de Chile. Valdivia. Chile. 57 p.
Neilsen, W.A. & Pinkard, E. (1999). Developing silvicultural regimes for saw log and veneer production from temperate Eucalypt plantations in Tasmania. In: Proceedings of the Conference on XII SILVOTECNA. Eucalypts in Chile, Present and Future Conception. Chile, 27 p.
Nolan, G., Greaves, B., Washusen, R., Parsons, M. & Jennings, S. (2005). Eucalypt plantations for solid Wood products in Australia -A review: If you don't prune it, we can't use it. Project no: PN04.3002. Forest & Wood Products Research & Development Corporation Victoria, Australia. 130 p.
Nutto, L. & Touza, M. (2004). High quality Eucalyptus saw log production. In Eucalyptus in a changing world. Proceedings of International Union of Forestry Research Organisations Conference, 11-15 October. Aveiro, Portugal. Pp: 658-666.
Prodan, M., Peters, R., Cox, F. & Real, P. (1997). Mensura Forestal. Serie Investigación y Educación en Desarrollo Sostenible. IICA-BMZ/GTZ. 561 p.
Raymond, C., Kube, P., Pinkard, L., Savage, L., & Bradley, A. (2004). Evaluation of non-destructive methods of measuring growth stress in Eucalyptus globulus: Relationships between strain, wood properties and stress. Forest Ecology and Management, 190. Pp:187-200. https://doi.org/10.1016/j.foreco.2003.10.011
Roth, B., Li, X., Huber, D. & Peter, G. (2007). Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile Loblolly Pine in the southeastern USA. Forest Ecology and Management, 246. Pp: 155-162. https://doi.org/10.1016/j.foreco.2007.03.028
Sarén, M., Serimaa, R., Andersson, S., Saranpää, P., Keckes, J. & Fratzl, P. (2004). Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway Spruce. Trees,18. Pp: 354-362. https://doi.org/10.1007/s00468-003-0313-8
SAS INSTITUTE INC. (2000). SAS/STAT User’s Guide: Version 8, vol. 1-3. SAS Institute Inc. Cary, NC. 3884 p.
Schlatter, J., Gerding, V. & Adriazola, J. (1994). Sistema de ordenamiento de la tierra. Herramienta para la planificación forestal aplicado a las Regiones VII, VIII y IX. Facultad de Ciencias Forestales, Universidad Austral de Chile. 33 p.
Schönau, A.P. (1974). The effect of planting space and pruning on growth, yield and timber density of Eucalyptus grandis. S Afr For Jour., 88 Pp: 16-23. https://doi.org/10.1080/00382167.1974.9629319
Stöckle, M. (1996). Efecto inicial de poda y raleo en el crecimiento de un rodal de Eucalyptus nitens de 6 años de edad. Tesis Ingeniero Forestal. Concepción, Chile. Facultad de Ciencias Forestales, Universidad de Concepción. 26 p.
Telewski, F.W. (1995). Wind-induced physiological and developmental responses in trees. Wind and Trees. Ed. Coutts-MP and Grace-J. Cambridge University Press. Pp: 237-263. https://doi.org/10.1017/CBO9780511600425.015
Trugilho, P., Iwakiri, S., Rocha, M., Matos, J.& Saldanha, L. (2004). Age and diametric class effects on longitudinal residual strain in Eucalyptus dunnii trees. Revista Arvore, 28. Pp: 725-731. https://doi.org/10.1590/S0100-67622004000500012
Trugilho, P., Lima, J., De Pádua, F., DeCarvalho, L. & Andrade, C. (2006). Deformação residual longitudinal (DRL) e tangencial (DRT) em seis clones de Eucalyptus spp. Cerne,12. Pp: 279-286.
Valdés, R. (2004). Determinación de tensiones crecimiento de Eucalyptus nitens mediante método no destructivo. Memoria para optar al título de Ingeniero en Industrias de la Madera, Universidad de Talca, Chile. 48 p.
Valencia, J. (2008). Application of non-destructive evaluation techniques to the prediction of solid-wood suitability of plantation grown Eucalyptus nitens logs. Thesis Submitted in fulfilment of the requirements for the Degree of Master of Science. University of Tasmania, Australia.
Valencia, J., Harwood, C., Washusen, R., Morrow, A., Wood, M. & Volker, P. (2011). Longitudinal growth strain as a log and wood quality predictor for plantation-grown Eucalyptus nitens sawlogs. Wood Sci. Technol., 45. Pp: 15-34. https://doi.org/10.1007/s00226-010-0302-1
Waghorn, M. J., Mason, E. & Watt, M. (2007). Influence of initial stand density and genotype on longitudinal variation in modulus of elasticity for 17-year-old Pinus radiata. For. Ecol. and Manag., 252. Pp: 67-72. https://doi.org/10.1016/j.foreco.2007.06.019
Warren, E., Smith, R., Apiolaza, L. & Walker, J. (2009). Effect of stocking on juvenile wood stiffness for three Eucalyptus species. New Forests, 37. Pp: 241-250. https://doi.org/10.1007/s11056-008-9120-9
Watt, M.S., Moore, J., Facon, J., Downes, G., Clinton, P., Coker, G., Davis, M., Simcock, R., Parfitt, R., Dando, J., Mason, E. & Bown, H. (2006). Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata dynamic modulus of elasticity. For. Ecol. and Manag., 229. Pp: 136-144. https://doi.org/10.1016/j.foreco.2006.03.016
Wilson, J.S. & Oliver, C. (2000). Stability and density management in Douglas Fir plantations. Can. J. For. Res., 30. Pp: 910-920. https://doi.org/10.1139/x00-027
Yang, J.L. & Evans, R. (2003). Prediction of MOE of Eucalypt wood from microfibril angle and density. Holz als Roh-
und Werkstoff, 61. Pp: 449-452. https://doi.org/10.1007/s00107-003-0424-3
Yang, J.L. (2005). The impact of log-end splits and spring on sawn recovery of 32-year-old plantation Eucalyptus globulus Labill. Holz als Roh-und Werkstoff, 63. Pp: 442-448. https://doi.org/10.1007/s00107-005-0035-2
Yang, J.L., Baillères, H., Okuyama, T., Muneri, A. & Downes, G. (2005). Measurement methods for longitudinal surface strain in trees: a review. Australian Forestry, 68(1):34-43. https://doi.org/10.1080/00049158.2005.10676224
Zobel, B. & Van Buijtenen, J. (1989). Wood variation. Its causes and control. Springer Series in Wood Science. Springer-Verlag. Berlin. 363 p. https://doi.org/10.1007/978-3-642-74069-5_1
Zobel, B., Sprague, J. (1998). Juvenile Wood in Forest Trees. Ediciones Springer. Berlín, Alemania. 300 p. https://doi.org/10.1007/978-3-642-72126-7
Descargas
Los trabajos publicados en Ciencia & Investigación Forestal se rigen por la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0).
En lo esencial esta licencia involucra que los autores conservan sus derechos de autor, y que los lectores puedan de forma gratuita descargar, almacenar, copiar y distribuir la versión final aprobada y publicada del trabajo, siempre y cuando se realice sin fines comerciales y se cite la fuente y autoría de la obra.