Comportamiento frente a la sequía de plantas rebrotadas tras tala en bosque mediterráneo el caso de Quercus ilex

Vol. 15 Núm. 2 (2009) / Artículos

Contenido principal del artículo

Isabel Fleck
Xavier Aranda Fratarolla
Karen Angélica Peña Rojas

Resumen

Se estudio la conducta ecofisiológica en respuesta a la sequía de plantas de encina (Quercus ilex L.) intactas (controles) y plantas rebrotadas tras tala de la misma especie. El experimento se realizó a lo largo de un año en la Sierra de Collserola, Barcelona, España utilizando diversas de bosque con diferente disponibilidad de agua en el suelo

Referencias

Chaves, M.M., Maroco, J.P. & Pereira, J.S. (2003). Understanding plant responses to drought: from genes to the whole plant. Functional Plant Biology, 30. Pp: 239-264. https://doi.org/10.1071/FP02076

Demmig-Adams, B. & Adams,III W.W. (1996). Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among plant species. Planta,198. Pp: 460-470. https://doi.org/10.1007/BF00620064

Dijkstra, P. (1989). Cause and effect of differences in specific leaf area. In: Lambers, H. et al. (Eds). Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing by,The Hague,TheNetherlands. Pp:125-140.

Epron, D., Godard, D., Cornic, G. & Genty, B. (1995). Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant Cell and Environment, 18. Pp: 43-51. https://doi.org/10.1111/j.1365-3040.1995.tb00542.x

Farquhar, G.D. & Sharkey, T.D. (1982). Stomatal conductance and photosynthesis. Annual Review Plant Physiology, 33. Pp: 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533

Field, C. & Mooney, H.A. (1986). The photosynthesis-nitrogen relationships in wild plants. In: Givinish,T.J. (Ed). On the economy of plant form and function. Cambridge University Press. Cambridge, England. Pp: 25-56.

Fleck, l., Grau, D., Sanjosé, M.& Vidal, D. (1996). Influence of fire and tree-fell on physiological parameters in Quercus iIex resprouts. Annals of Forest Science, 53. Pp: 337-346. https://doi.org/10.1051/forest:19960216

Fleck, l., Hogan, K.P., Llorens, L., Abadia, A & Aranda, X. (1998). Photosynthesis and photo protection in Quercus ilex resprouts after fire. Tree Physiology, 18. Pp: 607-614. https://doi.org/10.1093/treephys/18.8-9.607

Flexas, J., Bota, J., Escalona, J.M., Sampol, B. & Medrana, H. (2002). Effects of drought on photosynthesis in grave pines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29. Pp: 461-471. https://doi.org/10.1071/PP01119

Flexas, J., Bota, J., Loreto, F., Cornic, G. & Sharkey, T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6. Pp: 269-279. https://doi.org/10.1055/s-2004-820867

Flexas, J., Ribas-Carbó. M., Bola, J., Galmés, J., Henkle, M., Martinez-Cañellas, S. Medrano, H. (2006). Decreased Rubisco activity during wáter stress is not induced by decreased relative wáter content but related toconditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol., 172(1): 73-82. https://doi.org/10.1111/j.1469-8137.2006.01794.x

Genty, B., Brianlais, J.M. & Baker, N.R. (1989). The relalionship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemical Biophysical Acta, 990. Pp: 87-92. https://doi.org/10.1016/S0304-4165(89)80016-9

Gillon, Jim & Yakir, Dan. (2000). Internal Conductance to CO2 diffusion and C18OO Discrimination in C3 Leaves Plant Physiolagy 201-214. https://doi.org/10.1104/pp.123.1.201

Gratani ,L. & Bombelli, A. (1999). Leaf anatomy, inclination, and gas Exchange relationships in evergreen sclerophyllous and drought semideciduous shrub species. Photosynthetica, 37. Pp: 573-585. https://doi.org/10.1023/A:1007171525298

Gulias, J., Flexas,J., Mus, M., Cifre, J., Lefi, E. & Medrano, H. (2003). Relalions between máximum leaf photosynthesis, nitragen content and specific leaf área in Balearic endemic and non endemic Mediterranean species. Annals of Botany, 92. Pp: 215-222. https://doi.org/10.1093/aob/mcg123

Hanba, Y.T., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Terashima, l. & Katsuhara, M. (2004). Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol, 45. Pp: 21-529. https://doi.org/10.1093/pcp/pch070

Houghlon, J.T., Oing,Y., Griggs, O.J., Noguer, M., vander Linden, P.J., Oral, X., Maskell, K. & Johnson, C.A. (Eds). (2001). Climate change: TheScientific Basis. Contribution of Working Group I in the Third Assessment Report of Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge. 251p.

Kooten, O.V. & Snel, J.F.H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25. Pp:147-150. https://doi.org/10.1007/BF00033156

Kruger, E.L. & Reich, P,B. (1997). Response of hardwood regeneration to fire in mesic forest openings. II Leaf gas exchange, nitrogen concentration and wáter status. Canadian Journal of Forest Research, 27. Pp: 1832-1840. https://doi.org/10.1139/x97-137

Loreto, F., DiMarco, G., Trieoli, O, & Sharkey, T.D. (1994). Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron links of field grown wheat leaves. Photosynthesis Researeh, 41. Pp: 397-403. https://doi.org/10.1007/BF02183042

Lawlor, D.W. & Cornic, G. (2002). Photosynthetic carbón assimilation and associated metabolism in relation to wáter déficits in higher plants. Plant Cell and Environment, 25. Pp: 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x

Mc Murtrie, R.E. & Wang, Y.P. (1993). Mathematical models of the photosynthetic responses of tree stand to rising CO2 concentrations and temperatures. Plant Cell Environment,16. Pp: 1-13. https://doi.org/10.1111/j.1365-3040.1993.tb00839.x

Mediavilla, S., Escudero, A. & Heilmeier, H. (2001). Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiology, 21. Pp: 251-259. https://doi.org/10.1093/treephys/21.4.251

Méthy, M., Damesin, C. & Rambal, S. (1996). Drought and photo system II activity in two Mediterranean oaks. Annals Forest Science, 53. Pp: 255-262. https://doi.org/10.1051/forest:19960208

Mouillot, F., Rambal, S. & Joffre, R. (2002). Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology, 8. Pp: 423-437. https://doi.org/10.1046/j.1365-2486.2002.00494.x

Niinemets, Ü. (1999). Research review. Components of leaf mass per área –thickness and density-alter leaf photosynthelic capacity in reverse directions in Woody plants. New Phytologist, 144. Pp: 35-47. https://doi.org/10.1046/j.1469-8137.1999.00466.x

Niinemets, Ü. (2001). Global-scale climatic controls of leaf mass per area, density, and thiekness in tres and shrubs. Ecology, 82. Pp: 453-469. https://doi.org/10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2

Niinemets, Ü., Cescatti, A., Rodeghiero, M. & Tosens, T. (2005). Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-Ieaved species. Plant Cell Environment, 28. Pp: 1552-1566. https://doi.org/10.1111/j.1365-3040.2005.01392.x

Oxborough, K. & Saker, N.R. (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qp and F’v/F’m without measuring F’o. Photosynthesis Research, 54. Pp: 135-142. https://doi.org/10.1023/A:1005936823310

Peña-Rojas, K., Aranda. X. & Fleck, l. (2004). Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex L. resprouts under slowly-imposed draught. Tree Physiology, 24. Pp: 813-822. https://doi.org/10.1093/treephys/24.7.813

Peña-Rojas, K., Aranda, X., Joffre. R. & and Fleck, l. (2005). Leaf morphology. Photo chemistry and wáter status changes in resprouting Quereus ilex during drought. Functional Plant Biology, 32. Pp: 117-130. https://doi.org/10.1071/FP04137

Renou, J.l., Gerbaud, A., Just, D. & André,M. (1990). Differing substomatal and chloroplastic concentrations in water-stressed wheat. Planta,182. Pp: 415-419. https://doi.org/10.1007/BF02411393

Saruwatari, M.W. & Davis, S.O. (1989). Tissue wáter relations of three chaparral shrub species after wild fire. Oeeologia, 80. Pp: 303-308. https://doi.org/10.1007/BF00379031

Tenhunen, J.O., Pearcy, R.W. & Lange, O.L. (1987). Diurnal variations in leaf conductance and gas Exchange in natural environments. In: Zeiger, E., Farquhar, G.D. & Cowan, I.R. (Eds). Stomatal function. Stanford University Press. Stanford. Califomia. USA. Pp: 323-352.

Terashima, l., Miyazawa, S.I. & Hanba, Y.T. (2001). Why are sun leaves thicker tan shade leaves?- consideration based on analyses of CO2 diffusion in the leaf. Journal of Plant Research, 114. Pp: 93-105. https://doi.org/10.1007/PL00013972

Wilkowski, E.T.F. & Lamont, B.B. (1991). Leaf specific mass confounds leaf density and thickness. Oecolegia, 88. Pp: 486-493. https://doi.org/10.1007/BF00317710

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo